ÄúÏÖÔÚµÄλÖÃÊÇ£º°®ÎÊ
µÈ¼ÛÎÞÇîСÌæ»»¹«Ê½Ò»¹²ÓжàÉÙ£¿ÒªÏêϸµÄ
2021-07-03 15:45°®ÎÊ
¼ò½éµÈ¼ÛÎÞÇîС¹«Ê½´óÈ«µÈ¼ÛÎÞÇîСÌæ»»¹«Ê½ÈçÏ :ÒÔÉϸ÷ʽ¿Éͨ¹ýÌ©ÀÕÕ¹¿ªÊ½ÍƵ¼³öÀ´¡£ µÈ¼ÛÎÞÇîСÊÇÎÞÇîСµÄÒ»ÖÖ£¬Ò²ÊÇͬ½×ÎÞÇîС¡£´ÓÁíÒ»·½ÃæÀ´Ëµ£¬µÈ¼ÛÎÞÇîСҲ¿ÉÒÔ¿´³ÉÊÇÌ©ÀÕ¹«Ê½ÔÚÁãµãÕ¹¿ªµ½Ò»½×µÄÌ©ÀÕÕ¹¿ª¹«Ê½¡£ Çó¼«ÏÞʱ£¬Ê¹ÓõÈ...
µÈ¼ÛÎÞÇîСÌæ»»¹«Ê½Ò»¹²ÓжàÉÙ£¿ÒªÏêϸµÄ
µÈ¼ÛÎÞÇîСÌæ»»¹«Ê½ÈçÏ :
ÒÔÉϸ÷ʽ¿Éͨ¹ýÌ©ÀÕÕ¹¿ªÊ½ÍƵ¼³öÀ´¡£
µÈ¼ÛÎÞÇîСÊÇÎÞÇîСµÄÒ»ÖÖ£¬Ò²ÊÇͬ½×ÎÞÇîС¡£´ÓÁíÒ»·½ÃæÀ´Ëµ£¬µÈ¼ÛÎÞÇîСҲ¿ÉÒÔ¿´³ÉÊÇÌ©ÀÕ¹«Ê½ÔÚÁãµãÕ¹¿ªµ½Ò»½×µÄÌ©ÀÕÕ¹¿ª¹«Ê½¡£
À©Õ¹×ÊÁÏ:
Çó¼«ÏÞʱ£¬Ê¹ÓõȼÛÎÞÇîСµÄÌõ¼þ£º
1. ±»´ú»»µÄÁ¿£¬ÔÚÈ¡¼«ÏÞµÄʱºò¼«ÏÞֵΪ0£»
2. ±»´ú»»µÄÁ¿£¬×÷Ϊ±»³Ë»òÕß±»³ýµÄÔªËØʱ¿ÉÒÔÓõȼÛÎÞÇîС´ú»»£¬µ«ÊÇ×÷Ϊ¼Ó¼õµÄÔªËØʱ¾Í²»¿ÉÒÔ£¬¼Ó¼õʱ¿ÉÒÔÕûÌå´ú»»£¬²»Ò»¶¨ÄÜËæÒâµ¥¶À´ú»»»ò·Ö±ð´ú»»¡£
²Î¿¼×ÊÁÏ:
°Ù¶È°Ù¿Æ_µÈ¼ÛÎÞÇîС
±¾»Ø´ð±»ÍøÓѲÉÄɸߵÈÊýѧÖÐËùÓеȼÛÎÞÇîСµÄ¹«Ê½
¨{¦î©ß¨T©×Ò» ¸ù¾ÝarcsinxµÄÌ©ÀÕ¹«Ê½£¬¿ÉÒÔÇáËɵõ½ÎªÍ¬½×²»µÈ¼ÛÎÞÇîС¡£x¡ú0£¬Ê±x¡úsinx ; x¡úarcsinx ; x¡útanx ;x¡úarctanx; x¡úln(1+x); x¡ú(e^x-1); [(1+x)^n-1]¡únx;(1-cosx)¡úx*x/2;a^x-1¡úxlna, ln(1+x)¡úx;Âó¿ËÀÍÁÖ¹«Ê½Ò²ÊÇ£¬ ÄǸö·ûºÅ²»ºÃд£¬Äã¿Î±¾ÉÏ»òÕßÏ°ÌâÀïÓÐ.Àý1 limx¡ú0tanx-sinxx3 ¸øÄã¾Ù¼¸¸öÀûÓÃÎÞÇîСµÄÀý×Ó Àý1 limx¡ú0tanx-sinxx3¡¡¡¡½â£ºÔʽ=limx¡ú0sinx(1-cosx)x3cosx=limx¡ú0x¡¤12x2x3(¡ß sinx¡«x,1-cosx¡«x22)=12¡¡¡¡´ËÌâÒ²¿ÉÓÃÂÞ±ÈËþ·¨Ôò×ö£¬µ«²»ÄÜÓÃÐÔÖÊ¢Ü×ö¡£ ¡ß tanx-sinxx3=x-xx3=0£¬²»Âú×ãÐÔÖʢܵÄÌõ¼þ£¬·ñÔòµÃ³ö´íÎó½áÂÛ0¡£¡¡¡¡Àý2 limx¡ú0e2x-31+xx+sinx2¡¡¡¡½â£ºÔʽ=limx¡ú0e2x-1-(31+x-1)x+x2=limx¡ú02x-13xx(1+x)=53Àý3 limx¡ú0(1x2-cot2x)¡¡¡¡½â·¨1£ºÔʽ=limx¡ú0sin2x-x2cos2xx2sin2x =limx¡ú0(sinx+xcosx)(sinx-xcosx)x4 =limx¡ú0x2(1+cosx)(1-cosx)x4 (¡ß sinx¡«x) =limx¡ú0(1+cosx)(1-cosx)x2 =limx¡ú012x2¡¤(1+cosx)x2=1¡¡¡¡½â·¨2£ºÔʽ=limx¡ú0tan2x-x2x2tan2x =limx¡ú0(tanx+x)(tanx-x)x4 =limx¡ú02x(tanx-x)x44 (¡ß tanx¡«x) =limx¡ú02(tanx-x)x3 =limx¡ú02(sec2x-1)3x2 =23limx¡ú0tan2xx2=23 (¡ß tanx¡«x)Àý4£Û3£Ý limx¡ú0+tan(sinx)sin(tanx) ½â£ºÔʽ=limx¡ú0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) £¨ÓÃÂÞ±ÈËþ·¨Ôò£© =limx¡ú0+sec2(sinx)cosxcos(tanx)sec2x¡¤limx¡ú0+sin(tanx)tan(sinx) £¨·ÖÀë·ÇÁ㼫Ï޳˻ýÒò×Ó£© =limx¡ú0+sin(tanx)tan(sinx) £¨Ëã³ö·ÇÁ㼫ÏÞ£© =limx¡ú0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) £¨ÓÃÂÞ±ÈËþ·¨Ôò£© =limx¡ú0+cos(sinx)sec2xsec2(sinx)cosx¡¤limx¡ú0+tan(sinx)sin(tanx) =limx¡ú0+tan(sinx)sin(tanx) ³öÏÖÑ»·£¬´ËʱÓÃÂÞ±ÈËþ·¨ÔòÇó²»³ö½á¹û¡£Ôõô°ì£¿ÓõȼÛÎÞÇîС´ú»»¡£ ¡ß x¡«sinx¡«tanx(x¡ú0) ¡à Ôʽ=limx¡ú0+xx=1¶øµÃ½â¡£
ÇóÏêϸµÄµÈ¼ÛÎÞÇîСµÄÌæ»»¹«Ê½
¿¼Ñз¶Î§ÄڵȼÛÎÞÇîСµÄÌæ»»¹«Ê½ÓÐÄÄЩ£¿
µ±x¡ú0ʱ£¬ ¡¡¡¡sinx~x ¡¡¡¡tanx~x ¡¡¡¡arcsinx~x ¡¡¡¡ arctanx~x ¡¡¡¡ 1-cosx~(1/2)*£¨x^2£©~ secx-1 ¡¡£¨a^x£©-1~x*lna (£¨a^x-1)/x~lna) ¡¡¡¡ £¨e^x£©-1~x ¡¡ ¡¡ln(1+x)~x ¡¡¡¡ (1+Bx)^a-1~aBx ¡¡¡¡ [(1+x)^1/n]-1~£¨1/n£©*x ¡¡¡¡ loga(1+x)~x/lna ¡¡¡¡ £¨1+x)^a-1~ax(a¡Ù0) ¡¡¡¡ ÖµµÃ×¢ÒâµÄÊÇ£¬µÈ¼ÛÎÞÇîСһ°ãÖ»ÄÜÔڳ˳ýÖÐÌæ»»£¬ ÔÚ¼Ó¼õÖÐÌæ»»ÓÐʱ»á³ö´í£¨¼Ó¼õʱ¿ÉÒÔÕûÌå´ú»»£¬²»Äܵ¥¶À´ú»»»ò·Ö±ð´ú»»£© ±¾»Ø´ð±»ÍøÓѲÉÄÉ
¿¼Ñз¶Î§ÄÚ£¬µÈ¼ÛÎÞÇîСµÄÌæ»»¹«Ê½ÓÐÄÄЩ£¿
ÒÔÉÏÊǹØÓڵȼÛÎÞÇîС¹«Ê½´óÈ«µÄÎÊ´ð
Tags£ºµÈ¼ÛÎÞÇîС¹«Ê½´óÈ«,µÈ¼ÛÎÞÇîСÌæ»»¹«Ê½Ò»¹²ÓжàÉÙ£¿ÒªÏêϸµÄ,
ÉÏһƪ£ºÓÐûÓиü¼ò±ãʵÓõÄÉ£¹û¾ÆÖÆ×÷·½·¨£¿
ÏÂһƪ£º&ÊÇʲô·ûºÅ£¿
Ïà¹ØÎÄÕÂ
- Å£×ÐÁ¬ÒÂȹÔõô´îÅä4¿î´îÅäÈÃÄã¸üÓÐÆøÖʸüÓÐ÷ÈÁ¦
- Íè×ÓÍ·ÔõôÔú Íè×ÓÍ·ÐÂÔú·¨
- ÏÄÌì¶Ì·¢·¢ÐͼòÔ¼Éè¼ÆʱÉÐÇåÁ¹
- Ô½¾íÔ½ÃÀÀö 8¿îÈÕϵ¾í·¢³¬ÓÐÅ®ÈËζ
- һЩ¼òµ¥µÄ¼¼ÇÉ ½ÌÄãÔõÑù´òÀíÄãµÄ¾í·¢
- ³éÑÌÄÐÊ¿¾¯Ì裡²»±£ÑøÈÃÄãÌáÇ°Ë¥ÀÏ
- ¸ñ×Ó¿ã×ÓÔõô´îÅä ¸ñ×Ó¿Ø´ò°ç³±Á÷Ðľ
- ¸ñ×Ó¿ã×Ó´îÅ䷽ʽ ÈçºÎ´îÅäÈÃÄã¼òµ¥ÓÖʱÉÐ
- ǽÃæÆá¿ÉÒÔ³ý¼×È©£¿
- ×°ÐÞʣϵķϾÉľ°åDIYʵÓõļҾß
Ëæ»úͼÎÄ
-
º¢×ÓÒ»¿ÞÄÖ¼Ò³¤¾ÍÍ×У¿ÕýÈ·½ÌÓýº¢×ÓºÜÖØÒª£¬²»ÒªÃ¤Ä¿
ÔÚ¹äÉ̳¡µÄʱºò£¬ÏàÐÅ´ó¼ÒÒ²»á¿´µ½ÓÐÐí¶à²»Ò»ÑùµÄСÅóÓÑ£¬±ÈÈç˵ÓкܶàµÄСÅóÓѶ¼»á²»ÂòÍæ¾ßÊIJ»°ÕÐÝ£¬ÉõÖÁ... -
µ¥Î»´òÓ¡»úð³öÌõβ°Í£¡Å®×Óɪɪ·¢¶¶£¬ÉßÔõô½øÈëµ½°ì
ÊǺܶàÈ˶¼»á±È½Ïº¦Å£¬ÎÞÂÛÊdzöÏÖÔÚÍâÃæÓÖ»òÕßÊdzöÏÖÔÚ¼ÒÖУ¬ÏàÐÅÔÚ´Ëʱ´ó²¿·ÖÈ˵ÄÐÄÖж¼»á¾õµÃÓÐЩ¿Ö»Å¡£... -
ÀóÖ¦2Ôª/½ï£¿ÕæµÄ¿ÉÒÔʵÏÖÀóÖ¦×ÔÓÉÂ𣿣¬¾¡ÇéÏíÊÜ
ϲ»¶³ÔÀóÖ¦µÄһЩÎ人ÊÐÃñ½¨Ò飬ÔÚÑ¡¹ºµÄʱºò»¹ÊÇÓ¦¸ÃÑ¡Ôñ¶à¶Ô±È£¬»òÐíÔÚ²»¾ÒâÖ®¼ä¾Í¿ÉÒÔÖ±½Ó¼ñµ½Ò»¸ö´ó±ã... -
Ñ©Á«µÄÔâÓöÊÇËÔÚÍƶ¯£¿5ëµÄ±ù¿éÑ©¸âΪºÎ±»ÈËÖÊÒÉ
ÓÐÈË˵Ӧ¸ÃÔõôȥ¿´´ýÑ©Á«Ñ©¸âµÄ±ÙÒ¥£¬ÓÐÎÞÊýµÄÈ˶¼»áΪѩÁ«Ãù²»Æ½£¬Ò²Í¬ÑùÊÇÏëҪΪ×Ô¼ºµÄ¿Ú´üÕÒһЩµ×Æø£¬...
µã»÷ÅÅÐÐ
- µ¥Î»´òÓ¡»úð³öÌõβ°Í£¡Å®×Óɪɪ·¢¶¶£¬ÉßÔõô½øÈëµ½°ì
- ÀóÖ¦2Ôª/½ï£¿ÕæµÄ¿ÉÒÔʵÏÖÀóÖ¦×ÔÓÉÂ𣿣¬¾¡ÇéÏíÊÜ
- Ñ©Á«µÄÔâÓöÊÇËÔÚÍƶ¯£¿5ëµÄ±ù¿éÑ©¸âΪºÎ±»ÈËÖÊÒÉ
- Å®ÉúÌø²Ù2СʱÖ¼¡ÈâÈܽ⣬Ô˶¯ºó³öÏÖ½´ÓÍÉ«Äò£¬¾¿¾¹
- ËÄ´¨ÌìÇÅÌ®Ëú£º·ÇÖÊÁ¿ÎÊÌ⣬¸úÌìÇŽ¨Ô췽ʽÓйأ¿Ê²Ã´
- °×¾ÆÊǽ¡¿µµÄ¾Æ£¿´¿Á¸ÄðµÄ°×¾Æ¸üºÃ£¿Ã¿Ìì2Á½¾ÆÊǺÃÊÇ
- ΪʲôŮ´óѧÉú»³ÔÐÏÖÏóÔ½À´Ô½¶à£¿ÖªµÀÔÒòºó²Å·¢ÏÖ£¬
- °ëÄêÄÚÅÖÁËÊ®½ï£¬ÎªÊ²Ã´Ô½¼õÔ½·Ê£¿º¼ÖÝÅ®×Ó°Ù˼²»µÃÆä
²ÂÄãϲ»¶
- Å£×ÐÁ¬ÒÂȹÔõô´îÅä4¿î´îÅäÈÃÄã¸üÓÐÆøÖʸüÓÐ÷ÈÁ¦
- Íè×ÓÍ·ÔõôÔú Íè×ÓÍ·ÐÂÔú·¨
- ÏÄÌì¶Ì·¢·¢ÐͼòÔ¼Éè¼ÆʱÉÐÇåÁ¹
- Ô½¾íÔ½ÃÀÀö 8¿îÈÕϵ¾í·¢³¬ÓÐÅ®ÈËζ
- һЩ¼òµ¥µÄ¼¼ÇÉ ½ÌÄãÔõÑù´òÀíÄãµÄ¾í·¢
- ³éÑÌÄÐÊ¿¾¯Ì裡²»±£ÑøÈÃÄãÌáÇ°Ë¥ÀÏ
- ¸ñ×Ó¿ã×ÓÔõô´îÅä ¸ñ×Ó¿Ø´ò°ç³±Á÷Ðľ
- ¸ñ×Ó¿ã×Ó´îÅ䷽ʽ ÈçºÎ´îÅäÈÃÄã¼òµ¥ÓÖʱÉÐ
- ǽÃæÆá¿ÉÒÔ³ý¼×È©£¿
- ×°ÐÞʣϵķϾÉľ°åDIYʵÓõļҾß