您现在的位置是:爱问

拟合程度 在回归分析中用什么评价拟合程度,其含义是什么

2021-04-21 13:18爱问

简介拟合程度...

1

在回归分析中用什么评价拟合程度,其含义是什么


不知道你要怎样比较预测值和真实值,比如计算一下残差值,或者计算一下均方误差之类?

在Linear Regression对话框,点Save按钮,会出现Linear Regression:Save对话框,在Predicted Values(预测值)和Residuals(残差)栏都选Unstandardized,会在数据表中输出预测值和残差,然后你想怎么比较都行.

判断模型是否有预测能力,其实就是模型检验,模型检验除了统计意义上的检验,还有实际意义上的检验,就是检验是否跟事实相符,比如收入与消费应该是正相关的,如果消费为被解释变量、收入为解释变量,如果收入的系数小于零,那肯定是不对的.

统计意义上的检验,包括参数的T检验,方程的F检验,还要检验残差是否白噪声.

检验模型是否具有外推预测能力,还可以这样做:比如,你收集了一个容量为50的样本,你可以用其中的48个样本点估计模型,然后估计另两个样本点,把估计值跟实际值做一个比较.
2

如何分析回归模型的拟合度和显著性


  模型的拟合度是用R和R方来表示的,一般大于0.4就可以了;自变量的显著性是根据各个自变量系数后面的Sig值判断的,如果小于0.05可以说在95%的显著性水平下显著,小于0.01就可以说在99%的显著性水平下显著了。如果没有给出系数表,是看不到显著性如何的。

  回归分析(regression analysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。 从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著。利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。

  其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。
3

哪些指标可用于评价线性回归模型的整体拟合程度


不知道你要怎样比较预测值和真实值,比如计算一下残差值,或者计算一下均方误差之类?

在Linear Regression对话框,点Save按钮,会出现Linear Regression:Save对话框,在Predicted Values(预测值)和Residuals(残差)栏都选Unstandardized,会在数据表中输出预测值和残差,然后你想怎么比较都行.

判断模型是否有预测能力,其实就是模型检验,模型检验除了统计意义上的检验,还有实际意义上的检验,就是检验是否跟事实相符,比如收入与消费应该是正相关的,如果消费为被解释变量、收入为解释变量,如果收入的系数小于零,那肯定是不对的.

统计意义上的检验,包括参数的T检验,方程的F检验,还要检验残差是否白噪声.

检验模型是否具有外推预测能力,还可以这样做:比如,你收集了一个容量为50的样本,你可以用其中的48个样本点估计模型,然后估计另两个样本点,把估计值跟实际值做一个比较.
4

四种回归模型中,哪种回归模型拟合度最好?为什么这么说


如果只是比对多种回归模型哪个好,那就选曲线估计,可同时选中线性,二次方等11个模型,拟合度看R2就行,哪个大哪个好。结果中有散点图也可以很直观看出哪种变化模型符合的。 不过一般做回归,首先要考虑的是线性回归,用途最广。 还有用的比较多的是非线性,这个要知道方程的。 至于多项Loistic和probit,说实在的我也不太清楚,书上学的没着重讲,案例分析也不常见。 这些模型都比较专业的,适用某些特定领域,选择的话有文献参照就直接借鉴好了。 本回答被网友采纳
5

6

解释回归模型,经验回归方程,理论回归方程的含义


第一章:导论

1

什么是统计学?统计方法可以分为哪两大类

统计学是收集、分析、表述和解释数据的科学。统计方法可分为描述统计方法和推断统计方法。

2

统计数据可分为哪几种类型?不同类型的数据各有什么特点

按照所采用的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的收集方法,分为观测的数据和实验的数据;按照被描述的对

象与时间的关系,分为截面数据和时间序列数据。

按计量尺度分时

:分数数据中各类别之间是平等的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比较顺序的;数值

型数据其结果表现为具体的数值。

按收集方法分时

:观测数据是在没有对事物进行人为控制的条件下等到的;实验数据的在实验中控制实验对象而

收集到的数据。

按被描述的对象与时间关系分时

:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的

情况。

3

举例说明总体、样本、参数、统计量、变量这几个概念

总体

是包含研究的全部个体的集合。比如要检验一批灯泡的使用寿命,这一批灯泡构成的集合就是总体。

样本

是从总体中抽取的一部分元素的集合。

比如从一批灯泡中随机抽取

100

个,这

100

个灯泡就构成了一个样本。

参数

是用来描述总体特征的概括性数字度量。比如要调查一个地区所有人口

的平均年龄,

“平均年龄”即为一个参数。

统计量

是用来描述样本特征的概括性数字度量。比如要抽样调查一个地区所有人口的平均年龄,样本中的

“平均年龄”即为一个统计量。

变量

是说明现象某种特征的概念。比如商品的销售额是不确定的,这销售额就是变量。

第二章:数据的收集

1

调查方案包括哪几个方面的内容?

调查目的

,是调查所要达到的具体目标。

调查对象和调查单位

,是根据调查目的确定的调查研究的总体或调查范围。

调查项目和调查表

,要解决的

是调查的内容。

2

、数据的间接来源(二手数据)主要是公开出版或公开报道的数据;数据的直接来源一是调查或观察,二是实验。

3

统计调查方式

:抽样调查、普查、统计报表等。

抽样调查

是从调查对象的总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体数量特征的一种数据收集方法。

特点

:经

济性,时效性强,适应面广,准确性高。

普查

是为某一特定目的而专门组织一次性全面调查。我国进行的普查主要有人中普查、工业普查、农业普

查等。

统计报表

是按照国家有关法规的规定,自上而下地统一布置、自下而上地逐级提供基本统计数据的一种调查方式。

除此之外,还有重点调查和典型调查。

4

统计数据的误差

通常是指统计数据与客观现实之间的差距,误差的主要类型有抽样误差和非抽样误差两类。

抽样误差

主要是指在样本数据进行推断时所产生的随机误差(无法消除)

非抽样误差

是人为因素造成的(理论上可以消除)

5

统计数据的质量评价标准

:精度,即最低的抽样误差或随机误差;准确性,即最小的非抽样误差或偏差;关联性,即满足用户决策、管理和研究

的需要;及时性,即在最短的时间里取得并公布数据;一致性,即保持时间序列的可比性;最低成本,即在满足以上标准的前提下,以最经济的方

式取得数据。

6

数据的收集方法

分为询问调查与观察实验。

7

统计调查方案包括哪些内容?

调查目的

即调查所要达到的具体目标;

调查对象和调查单位

,调查对象是根据调查目的确定的调查研究的总体或调查范围,调查单位是构成调查对

象中的每一个单位;

调查项目和调查表

,就是调查的具体内容;

其它问题

,即明确调查所采用的方式和方法、调查时间及调查组织和实施细则。

第三章:数据整理与展示

1

、对于通过调查取得的原始数据,应主要从

完整性

准确性

两个方面去审核。

2

、对分类数据和顺序数据主要是做分类整理,对数值型数据则主要是做分组整理。

3

、数据分组的步骤:确定组数、组距,最后制成频数分布表

统计分组时“上组限不在内”

,相邻两组组限间断,上限值采用小数点。

组中值=(下限值

+

上限值)

/2

4

频数

:落在各类别中的数据个数;频数分布指把各个类别及落在其中的相应频数全部列出,并用表格形式表现出来;

比例

:某一类别数据占全部

数据的比值;百分比:将对比的基数作为

100

而计算的比值;

比率

:不同类别数值的比值;分类数据的图示包括条形图和饼图。

5

直方图与条形图的差别

:条形图是用条形的长度表示各类别频数的多少,宽度则是固定的,直方图是用面积表示各组频数的多少,矩形的高度表

示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。其次,直方图的各矩形通常是连续排列,而条形图则是分开排列。

最后,条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。

第四章:数据分布特征的测度

1

一组数据的分布特征可以从哪几个方面进行测度?

一是

分布的集中趋势

反映各数据向其中心值靠拢或聚集的程度;二

是分布的离散程度

,反映各数据据远离其中心值的趋势;三

是分布的形状

,反映

数据分布偏斜程度和峰度。

2

简述众数、中位数和均值的特点和应用场合及关系。

众数

是一组数据分布的峰值,不受极端值的影响,缺点是具有不唯一性。众数主要作为分类数据的集中趋势测度值。

中位数

是一组数据中间位置上的代表值,不受数据极端值的影响。中位数以及其他分位数主要适合于作为顺序数据的集中趋势测度值。

均值

是就数值型数据计算的,具有优良的数学性质,缺点是易受数据极端值的影响。均值主要适合于作为数值型数据的集中趋势测度值。

关系

:如果数据的分布是对称的,众数、中位数和均值必定相等,即

Mo=Me=xbar

;如果数据是左偏分布,说明数据存在极小值,三者之间的关系

表现为:

xbar

Me

Mo

;如果数据是右偏公布,说明数据存在极大值,必然拉动均值向极大值一方靠,则

Mo

Me

xbar

(图)

3

为什么要计算离散系数?

第一,极差、平均差、方差和标准差等都是反映数据分散程度的绝对值,其数值的大小取决于原变量值本身水平高低的影响。第二,它们与原变量

值的计量单位相同,采用不同计量单位计量的变量值,其离散程度的测度值也就不同。因此,为消除变量值水平高低和计量单位不同对离散程度的

测度值的影响,需要计算离散系数。

4

、均值是集中趋势的最主要测度值,它主要适用于数值型数据,而不适用于分类数据和顺序数据。

5

、四分位差主要用于测度顺序数据的离散程度,数值型数据也可以计算四分位差,但不适合于分类数据。

6

、方差是各变量值与其均值离差平方的平均数。方差的平方根是标准差。

方差、标准差计算公式(分组数据、未分组数据两种,自己写)

样本方差和标准差计算公式(同上)

7

、对于分类数据,主要用异众比率来测度其离散程度;对于顺序数据,主要用四分位差来测度其离散程度;对于数值型数据,主要用方差或标准差

来测度其离散程度。

8

经验法则

68%

1

95%

2

99%

3

第五章:抽样与参数估计

1

、常用的概率抽样方法主要有:简单随机抽样,分层抽样,系统抽样,整群抽样

2

、置信水平(

P115

第七章:相关与回归分析

1

解释相关关系的含义,并说明其特点。

相关关系是变量与变量之间存在的不确定的数量关系。

特点

是:一个变量的取值不能由另一个变量唯一确定,当变量

x

取某个值时,变量

y

的取值

可能有几个。

2

简述相关系数的取值及其意义,并说明相关程度的几种情况。

相关系数-

1

r

1

。若

0

r

1

,表明

x

y

之间存在正线性相关关系;若-

1

r

0

,表明

x

y

之间存在负线性相关关系;若

r

1

,表明

x

y

之间为完全正线性相关关系;若

r

=-

1

,表明

x

y

之间为完全负线性相关关系。

r

|≥

0.8

时,可视为高度相关;

0.5

≤|

r

|<

0.8

时,可视为中度相关;

0.3

≤|

r

|<

0.5

时,视为低度相关;当|

r

|<

0.3

时,说明两个变量之间

的相关程度极弱。

3

解释回归模型、回归方程、估计的回归方程的含义

回归模型

是描述因变量

y

如何依赖于自变量

x

和误差项的方程。

回归方程

是描述因变量

y

的期望值如何依赖于自变量

x

的方程。

估计的回归方程

利用最小二乘法,根据样本数据求出的回归方程的估计。

4

简述参数最小二乘估计的基本原理。

x

y

1

0

ˆ

ˆ

ˆ

这一公式的

x

y

n

对观察值,用于描述其关系的直线有多条,用距离观测点最近的一条直线,用它来表示

x

y

之间的关系与实际

线

线

0

ˆ

1

ˆ

最小

n

i

i

i

n

i

i

x

y

y

y

1

2

1

0

1

2

)

ˆ

ˆ

(

)

ˆ

(

5

简述判定系数的含义和作用

回归平方和占总平方和的比例,称为判定系数。它测度了回归直线对观测数据的拟合程度,它反映了在因变量

y

的总变量差中由于

x

y

之间的线

性关系所解释的比例。

第八章:时间序列分析和预测

1

利用增长率分析时间序列时应注意哪些问题?

首先,当时间序列中的观察值出现

0

或负数时,不宜计算增长率;其次,在有些情况下,不能单纯就增长率论增长率,要注意增长率与绝对水平的

结合分析。

第九章:指数

1

什么是指数?它有哪些性质?

反映复杂现象在不同场合下综合变动的一种特殊相对数,称为指数。

性质

:相对性;综合性;平均性;动态和静态兼有的特性。

2

指数有哪些类型?

根据对比场合不同,分为动态指数和静态指数;根据指数研究对象的范围不同,分为个体指数和总指数。

;根据编制方法的不同,总指数分为综合指

数和平均指数;根据指数反映的性质不同,分为质量指数、数量指数;根据比较时所采用的基期不同,分为定基指数和环比指数;根据计算采用权

数与否,分为简单指数和加权指数。
-

以上是关于拟合程度的问答

Tags:拟合程度,在回归分析中用什么评价拟合程度,其含义是什么,如何