为什么 > 0是自然数吗为什么,0为什么是自然数?

0是自然数吗为什么,0为什么是自然数?

2020-10-26 00:52阅读(60)

因为我国现行九年义务教育书和高级中学教科书(试验修订本)都把非负整数集叫做自然数集,记作N。这就明确指出0也是自然数集的一个元素。从教学实践层面来说,将

1

因为我国现行九年义务教育书和高级中学教科书(试验修订本)都把非负整数集叫做自然数集,记作N。这就明确指出0也是自然数集的一个元素。

从教学实践层面来说,将“0”规定为“自然数”也有着积极的现实意义。

在国际上,对于“0”,它是否包括在自然数之内仍然一直存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。

以法国为代表的多数国家都认为自然数从0开始,我国教材以前一直都是遵循前苏联的说法,认为0不是自然数。2000年教育部主持召开教材改编会议时,已明确提出将0归为自然数。

“0”加入传统的自然数集合,所有的“运算规则”依旧保持,如新自然数集合{0,1,2,…,n,…}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。

扩展资料

0是极为重要的数字,0的发现被称为人类伟大的发现之一。0在我国古代叫做金元数字,(意即极为珍贵的数字)。

0这个数据说是由印度人在约公元5世纪时发明,在1202年时,一个商人写了一本算盘之书,在东方中由于数学是以运算为主(西方当时以几何并在开头写了“印度人的9个数字,加上阿拉伯人发明的0符号便可以写出所有数字……”。

由于一些原因,在初引入0这个符号到西方时,曾经引起西方人的困惑, 因当时西方认为所有数都是正数,而且0这个数字会使很多算式、逻辑不能成立(如除以0),甚至认为是魔鬼数字,而被禁用。直至约公元15,16世纪0和负数才逐渐给西方人所认同,才使西方数学有快速发展。

-

下面是更多关于0是自然数吗为什么的问答

“0”为什么也是自然数?

对于“0”,它是否包括在自然数之内存在争议,有人认为自然数为正整数从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。到21世纪关于这个问题也尚无一致意见。

在国外,有些国家的教科书是把0也算作自然数的。这本是一种人为的规定,我国为了推行国际标准化组织(ISO)制定的国际标准,定义自然数集包含元素0,也是为了早日和国际接轨。

现行九年义务教育教科书和高级中学教科书(试验修订本)都把非负整数集叫做自然数集,记作N,而正整数集记作N+或N*。这就一改以往0不是自然数的说法,明确指出0也是自然数集的一个元素。0同时也是有理数,也是非负数和非正数。

中国的中小学教材原先规定自然数集不包括0。但中国之外的数学界,大部分都是规定0是自然数,为了国际交流的方便,《国家标准》中规定,自然数集包括0。

因此,在我们新出版的教材中,按照《国家标准》进行了这样的处理,自然数集合先现代称为正整数集。同时,我们也按照国家标准的规定规范使用了一些数学符号的表示方法。

从使用上看,规定自然数集合是否包括0并无太大影响。作为序数,从0开始和从1开始是一样的;以前我们所说的n∈N,现在只要说n是正整数(n∈N+)就可以了。

扩展资料:

0是介于-1和1之间的整数。是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1。0不能作为分母出现,0的所有倍数都是0。0不能作为除数。

0既不是正数也不是负数,而是正数和负数之间的一个数。当某个数X大于0(即X>0)时,称为正数;反之,当X小于0(即X<0)时,称为负数;而这个数X等于0时,这个数就是0。

0既不是正数也不是负数,而是介于-1和+1之间的整数。

0是偶数。

0是最小的完全平方数。

0的相反数是0,即,-0=0。

0的绝对值是其本身,即,∣0∣=0。

0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

0的正数次方等于0,0的负数次方无意义,因为0没有倒数。

除0外,任何数的的0次方等于1。

0是极为重要的数字,关于0这个数字概念在其它地区很早就有。公元前3000年,巴比伦人就已经懂得使用零来避免混淆。古埃及早在公元前2千年就有人在记帐时用特别符号来记载零。玛雅文明最早发明特别字体的0。玛雅数字中0以贝壳模样的象形符号代表。

参考资料:百度百科-自然数

本回答被网友采纳

“0”为什么也是自然数?

自然数是什么?0为什么是自然数?看完你就知道了。

0为什么是自然数?什么叫自然数

自然数,是非负整数(0, 1, 2, 3, 4……)。认为自然数不包含零的其个理由是因为人们在开始学习数字的时候是由“一、二、三...”开始,而不是由“零、一、二、三...”开始, 因为这样是非常不自然的。

自然数通常有两个作用:可以被用来计数(如“有七个苹果”),参阅基数;也可用于排序(如“这是国内第三大城市”),参阅序数。

自然数组成的集合是一个可数的,无上界的无穷集合。数学家一般以N来表示它。自然数集上有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数。也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。

自然数是人们认识的数系中最基本的一类。为了使数的系统有严密的逻辑基础,19世纪的数学家建立了关于自然数的两种理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。自然数的加法、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。

在全球范围内,目前针对0是否属于自然数的争论依旧存在。在中国大陆,2000年左右之前的中小学教材一般不将0列入自然数之内,或称其属于“扩大的自然数列”。在2000年左右之后的新版中小学教材中,普遍将0列入自然数。 本回答被网友采纳

0为什么是自然数?

自然数是什么?0为什么是自然数?看完你就知道了。

0是不是自然数?为什么?

0是自然数 最小的一位数是1

随着九年义务教育小学数学教材(试用修订,把0划归自然数后,一些数的概念是否发生变化,引起小学了数学教师的关注。无论是在日常的教研活动,还是教师私下交流,或是因特网上的教育论坛,都有许多教师提出疑问,引发了大家的思考。

思考之一:为什么要把0划归自然数

从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外的数学界大部分都规定0是自然数。为了方便于国际交流,1993年颁布的《中华人民共和国国家标准》(GB 3100-3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。

思考之二:最小的一位数是“1”还是“0”?

0是最小的自然数,那么最小的一位数是“1”还是“0”?在0没有归入自然数以前大家都很清楚,最小的一位数是1。那么,现在0也成为自然数了,最小的一位数还是1吗?这是许多教师提出的疑问,笔者认为最小的一位数还是1。

因为,0表示一个物体也没有,在记数法中是表示空位的一个符号,如3005里“0”就分别表示这个数的十位、百位、都是空位。这次调整虽然将“0”划归自然数,然而对几位数的概念并没改变。关于“几位数”是这样定义的“只用一个有效数字表示的数,叫做一位数,只用两个有效数字,其中左边第一个数字是有效数字来表示的数就叫做两位数……”假设0也算作一位数的话,那么最小的两位数是“10”还是“00”呢?那么最小的三位数、四位数……又是多少呢?

《九年义务教育六年制小学数学第八册教师教学用书》第98页“关于几位数”是这样叙述的:“通常在自然数里,含有几个数位的数,叫做几位数。例如,2,含有一个数位的数,叫做一位数;30含有两个数位的数,叫做两位数;405含有三个数位的数,叫做三位数……但是要注意:一般不说0是几位数。

所谓最大的几位数,最小的几位数,通常也是在非零自然数有范围来说。所以,最大一位数是9,最小一位数是1;最大两位数是99,最小两位数是10;最大三位数是999,最小三位数是100……”

综上所述,“0”虽然是最小的自然数,但仍然不能称为“一位数”,更不能称为最小的一位数。

思考之三:自然数的计数单位还是“1”吗?

大家都知道,0是自然数中最小的一个。0加1得1,1加1得2 ,2加1得3,……这样继续下去可以得到任意一个自然数。而从自然数的排列顺序可知,后面一个自然数比前面一个自然数多1。因此,任何一个自然数都是由若干个1合并而成,所以1是自然数的单位。0可以看成是由0个1组成的自然数。

思考之四:0是其它非零自然数的倍数吗?

《九年义务教育六年制小学数学》第十册中,关于“数的整除”及“约数和倍数”的定义并未做任何改变,教材第54页就有这样的叙述:“因为0也能被2整除,所以0也是偶数”。以此类推,0能被所有非零自然数整除,根据约数倍数的定义,0是任何非零自然数的倍数,任何非零自然数都是0的约数。但考虑到研究分解质因数、最大公约数、最小公倍数时,一般限于非零自然数范围内,如讲最小公倍数时,是把0排除在外的。为此,《九年义务教育六年制小学数学》第十册50页明确指出:“为了方便,以后在研究约数和倍数时,我们所说的数一般不包括0”。这样就避免了一些不必要的麻烦。但过去的一些说法就必须加以纠正了。例如:“一个自然数的最小倍数是它本身”、“自然数的约数的个数是有限的”等,这样的结论必须纠正。

思考之五:0是不是合数?

过去,在教学中,关于自然数的组成,有两种情况:一是所有奇数和所有的偶数组成自然数集合;二是所有的质数与所有的合数及1也组成自然数集合。现在0也成为了自然数集合的一员,因而有许多教师提出这样的问题:0是不是合数?

前面已经谈过了,以后“在研究约数和倍数时,我们所说的数一般不包括0”,但作为一种学术研究,进行探讨也未尝不可。笔者以为,0的约数有无数个,根据《九年义务教育六年制小学数学》第十册中关于合数的定义:“一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。”似乎应该把0划归为合数范围,但仔细一想0是个特殊的自然数,因为所有非零自然数都有“本身”这个约数,如,1是1的约数,2也是2的约数……,而0这个自然数恰恰少了“本身”这个约数,因此,也不能归为合数。试想:假设如果0是合数,那么它能用质因数相乘的形式表现出来吗?这就与“每个合数都可以写成几个质数相乘的形式”产生了矛盾。所以,我主张把0划归为“既不质数,也不是合数”范围。当然了,这需要权威机构和专家们的认定。但我认为,目前在没有明确0是不是合数的情况下,还是以回避为好。

思考之六:“任何相邻的两个自然数是互质数”对吗?

0没有成为自然数时,这一结论毫无疑问是正确的。现在0也是自然数,我们只要研究“0和1”这两个相邻的自然数是不是质数,就行了。根据《九年义务教育六年制小学数学》第十册中关于互质数的定义:“公约数只有1的两个数,叫做互质数。”笔者认为,0的约数有无数个,而1的约数只有一个,那就是它本身。综上所述,0和1的公约数只有“1”,因此,0和1是互质数。自然,“任何相邻的两个自然数是互质数”这个结论也是正确的。

相关问答推荐