Spark能代替Hadoop吗?:根据现有的发展,目前spark还不能完全代替Hadoop。我们知道Hadoop包含三个组件yarn,hdfs,MapRe:-spark,hadoop,代替
根据现有的发展,目前spark还不能完全代替Hadoop。
我们知道Hadoop包含三个组件yarn,hdfs,MapReduce,分别对应解决三个方面的问题,资源调度(yarn),分布式存储(hdfs),分布式计算(mapreudce)。而spark只解决了分布式计算方面的问题,跟MapReduce需要频繁写磁盘不同,spark重复利用内存,大大提高了计算效率,在分布式计算方面spark大有取代MapReduce之势,而在资源调度,和分布式存储方面spark还无法撼动。
个人觉得不会。因为两者的侧重点不同,使用场景不同,个人认为没有替代之说。Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的概念。RDD可以cache到内存中,那么每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作。但是,我们也要看到spark的限制:内存。我认为Hadoop虽然费时,但是在OLAP等大规模数据的应用场景,还是受欢迎的。
目前Hadoop涵盖了从数据收集、到分布式存储,再到分布式计算的各个领域,在各领域都有自己独特优势。
希望上面的回答对你有所帮助,如果还是不懂或者有问题,可以关注今日头条“小熊社长”头条号,私信我。希望能够对楼主有所帮助。如果喜欢请转发。
1、解决问题的层面不一样
首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处理的工具,它并不会进行分布式数据的存储。
2、两者可合可分
Hadoop除了提供为大家所共识的HDFS分布式数据存储功能之外,还提供了叫做MapReduce的数据处理功能。所以这里我们完全可以抛开Spark,使用Hadoop自身的MapReduce来完成数据的处理。
相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,毕竟它没有提供文件管理系统,所以,它必须和其他的分布式文件系统进行集成才能运作。这里我们可以选择Hadoop的HDFS,也可以选择其他的基于云的数据系统平台。但Spark默认来说还是被用在Hadoop上面的,毕竟,大家都认为它们的结合是最好的。
以下是从网上摘录的对MapReduce的最简洁明了的解析:
3、Spark数据处理速度秒杀MapReduceSpark因为其处理数据的方式不一样,会比MapReduce快上很多。MapReduce是分步对数据进行处理的: ”从集群中读取数据,进行一次处理,将结果写到集群,从集群中读取更新后的数据,进行下一次的处理,将结果写到集群,等等…“ Booz Allen Hamilton的数据科学家Kirk Borne如此解析。反观Spark,它会在内存中以接近“实时”的时间完成所有的数据分析:“从集群中读取数据,完成所有必须的分析处理,将结果写回集群,完成,” Born说道。Spark的批处理速度比MapReduce快近10倍,内存中的数据分析速度则快近100倍。如果需要处理的数据和结果需求大部分情况下是静态的,且你也有耐心等待批处理的完成的话,MapReduce的处理方式也是完全可以接受的。但如果你需要对流数据进行分析,比如那些来自于工厂的传感器收集回来的数据,又或者说你的应用是需要多重数据处理的,那么你也许更应该使用Spark进行处理。大部分机器学习算法都是需要多重数据处理的。此外,通常会用到Spark的应用场景有以下方面:实时的市场活动,在线产品推荐,网络安全分析,机器日记监控等。
4、灾难恢复两者的灾难恢复方式迥异,但是都很不错。因为Hadoop将每次处理后的数据都写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理。Spark的数据对象存储在分布于数据集群中的叫做弹性分布式数据集(RDD: Resilient Distributed Dataset)中。这些数据对象既可以放在内存,也可以放在磁盘,所以RDD同样也可以提供完成的灾难恢复功能。
你要说替代的话,看具体的需求饿了。
Spark可以对Hadoop起到一个很好的补充作用,而且在某种程度上,两者可以并行。Hadoop建立分布式文件系,而Spark负责进行高效地数据运算,从而搭建一个理想的大数据处理平台。
Hadoop解决了大数据(大到一台计算机无法进行存储,一台计算机无法在要求的时间内进行处理)的可靠存储和处理。
HDFS,在由普通PC组成的集群上提供高可靠的文件存储,通过将块保存多个副本的办法解决服务器或硬盘坏掉的问题。
MapReduce,通过简单的Mapper和Reducer的抽象提供一个编程模型,可以在一个由几十台上百台的PC组成的不可靠集群上并发地,分布式地处理大量的数据集,而把并发、分布式(如机器间通信)和故障恢复等计算细节隐藏起来。而Mapper和Reducer的抽象,又是各种各样的复杂数据处理都可以分解为的基本元素。尚学堂陈老师指出,复杂的数据处理可以分解为由多个Job(包含一个Mapper和一个Reducer)组成的有向无环图(DAG),然后每个Mapper和Reducer放到Hadoop集群上执行,就可以得出结果。
Spark在于运算速度快。Spark还可以执行批量处理,然而它真正擅长的是处理流工作负载、交互式查询和机器学习。
相比MapReduce基于磁盘的批量处理引擎,Spark赖以成名之处是其数据实时处理功能。Spark与Hadoop及其模块兼容。实际上,在Hadoop的项目页面上,Spark就被列为是一个模块。Spark有自己的页面,因为虽然它可以通过YARN(另一种资源协调者)在Hadoop集群中运行,但是它也有一种独立模式。它可以作为 Hadoop模块来运行,也可以作为独立解决方案来运行。MapReduce和Spark的主要区别在于,MapReduce使用持久存储,而Spark使用弹性分布式数据集(RDDS)。
华裔女赌王就此没落,生前让所有 浓情端午粽飘香,青浦邀你“云体 上海:“云端”展现端午节文化内 “甜咸大战”!明星艺人们喜欢什 如何做一个男人喜欢的情人(如何 当你和你同时出现在同一个场景中 如何在昏暗的光线下设置快门速度 教育在生活中的价值是什么? 世上做坏事的人死后会面临什么因 拜登就任总统后的第一步是什么? 同意/不同意:人生最重要的目标 二战后,德国在调和分歧方面做得 亚伯·林肯恨白人吗? 一个编辑能把你的故事毁得有多严 现在的iPhone6还能坚持再用一年 曹操为什么不杀司马懿? 现在买房是不是最便宜的时候,现 我身边的农业银行营业厅关了,AT 欧洲媒体评选CBA最有实力球员, 荣耀play的6+128和荣耀8X的6+128 蚂蚁集团是科技公司还是金融公司 请问机友华为mate30P与华为mate3 听说老詹修剪一次指甲需要5小时 为什么说宝宝“一月睡二月哭三月 戴笠人称戴老板,这个是怎么叫出 没有工作能一次性补缴社保么? 我想知道定向师范生和免费师范生 肺癌引起的咳嗽是怎样的呢? 5000mAh电池的5G手机推荐吗?要 恒大亚冠表现“差强人意”,你觉